Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-Methoxybenzyl)-1-benzothiophene

B. Gunasekaran,^a V. Dhayalan,^b A. K. Mohanakrishnan,^b G. Chakkaravarthi^c and V. Manivannan^d*

^aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India Correspondence e-mail: crystallography2010@gmail.com

Received 19 May 2010; accepted 20 May 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.066; wR factor = 0.176; data-to-parameter ratio = 18.0.

In the title compound, $C_{16}H_{14}OS$, the dihedral angle between the benzothiophene ring system and the benzene ring is 72.41 (12)°. A weak intermolecular C $-H \cdot \cdot \pi$ interaction from the benzene ring to the benzothiophene ring system is observed in the crystal structure.

Related literature

For the biological activity of thiophene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloora et al. (2010). For related structures, see: Gunasekaran et al. (2009); Umadevi et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental Crystal data

C₁₆H₁₄OS $M_r = 254.33$ Monoclinic, Pc a = 8.0158 (6) Å b = 10.8230 (9) Å c = 8.1219 (6) Å $\beta = 112.563 \ (4)^{\circ}$

V = 650.68 (9) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^-$ T = 295 K $0.25 \times 0.20 \times 0.20 \ \mathrm{mm}$

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.946, T_{\max} = 0.954$

6033 measured reflections 2946 independent reflections 2721 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.171$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.176$	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
2946 reflections	Absolute structure: Flack (1983)
164 parameters	1337 Friedel pairs
2 restraints	Flack parameter: -0.04 (11)

Table 1 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

8		0		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14\cdots Cg^{i}$	0.93	2.83	3.617 (2)	143
Symmetry code: (i) r	-1 v z - 1			

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BG thanks AMET University management, India, for their kind support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2551).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6583.
- Brault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-760.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.
- Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem., 45, 825-830

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Umadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790.

supplementary materials

Acta Cryst. (2010). E66, o1449 [doi:10.1107/S1600536810018866]

3-(4-Methoxybenzyl)-1-benzothiophene

B. Gunasekaran, V. Dhayalan, A. K. Mohanakrishnan, G. Chakkaravarthi and V. Manivannan

Comment

Thiophene derivatives exhibit anti-HIV PR inhibitors (Bonini *et al.*, 2005) and anti-breast cancer (Brault *et al.*, 2005) activities. In addition, some of the benzo[b]thiophene derivatives shows significant antimicrobial and anti-inflammatory activities (Isloora *et al.*, 2010).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Gunasekaran *et al.*, 2009; Umadevi *et al.*, 2009). The dihedral angle between the two benzene rings is 71.93 (8)°. The C1—S1 and C8—S1 bond distances are 1.738 (3) and 1.734 (3) Å respectively, which are comparable to the literature value of 1.712 (2) Å (Allen *et al.*, 1987).

The crystal packing is stabilized by a weak C—H··· π interaction [C14—H14···*Cg* (-1+*x*, *y*, -1+*z*), Table 1; *Cg* is the centroid of the ring defined by the atoms C1—C6].

Experimental

To a solution of 1-(bromomethyl)-4-methoxybenzene (0.7 g, 3.48 mmol) in dry 1,2-dichloroethane (20 ml) ZnBr₂ (0.23 g, 1.02 mmol) and benzo[b]thiophene (0.7 g, 5.22 mmol) were added. It was then stirred at room temperature for 6 h under N₂ atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml) containing 1 ml of conc. HCl, extracted with chloroform (2×10 ml) and dried (Na₂SO₄). Removal of solvent followed by column chromatographic purification (n-hexane/ethyl acetate 94:6) afforded the product as a colourless crystal.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

3-(4-Methoxybenzyl)-1-benzothiophene

Crystal data C₁₆H₁₄OS

F(000) = 268

$M_r = 254.33$
Monoclinic, Pc
Hall symbol: P -2yc
<i>a</i> = 8.0158 (6) Å
<i>b</i> = 10.8230 (9) Å
<i>c</i> = 8.1219 (6) Å
$\beta = 112.563 \ (4)^{\circ}$
$V = 650.68 (9) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer	2946 independent reflections
Radiation source: fine-focus sealed tube	2721 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.171$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
ω and ϕ scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 14$
$T_{\min} = 0.946, \ T_{\max} = 0.954$	$l = -10 \rightarrow 10$
6033 measured reflections	

 $D_{\rm x} = 1.298 {\rm Mg m}^{-3}$

 $\theta = 2.7-28.3^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.25 \times 0.20 \times 0.20 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4241 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.176$	$w = 1/[\sigma^2(F_o^2) + (0.1211P)^2 + 0.025P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2946 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
164 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
2 restraints	Absolute structure: Flack (1983), 1337 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.04 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9043 (4)	0.0721 (3)	0.6766 (3)	0.0493 (6)
C2	1.0778 (5)	0.0242 (3)	0.7621 (4)	0.0607 (7)
H2	1.0969	-0.0510	0.8219	0.073*
C3	1.2203 (5)	0.0925 (4)	0.7547 (5)	0.0671 (9)
H3	1.3374	0.0627	0.8111	0.081*
C4	1.1926 (5)	0.2048 (4)	0.6648 (5)	0.0616 (7)

H4	1.2912	0.2494	0.6634	0.074*
C5	1.0204 (4)	0.2504 (3)	0.5777 (4)	0.0513 (6)
Н5	1.0025	0.3250	0.5165	0.062*
C6	0.8728 (3)	0.1837 (2)	0.5821 (3)	0.0423 (5)
C7	0.6844 (3)	0.2155 (2)	0.5029 (3)	0.0433 (5)
C8	0.5818 (4)	0.1302 (3)	0.5405 (4)	0.0488 (5)
H8	0.4568	0.1362	0.5004	0.059*
C9	0.6202 (4)	0.3311 (3)	0.3944 (4)	0.0557 (6)
H9A	0.6662	0.3315	0.3000	0.067*
H9B	0.6716	0.4018	0.4703	0.067*
C10	0.4183 (4)	0.3466 (3)	0.3119 (3)	0.0497 (6)
C11	0.3305 (4)	0.4346 (3)	0.3745 (4)	0.0532 (6)
H11	0.3975	0.4844	0.4704	0.064*
C12	0.1454 (4)	0.4492 (3)	0.2967 (4)	0.0542 (6)
H12	0.0899	0.5101	0.3387	0.065*
C13	0.0417 (4)	0.3743 (3)	0.1570 (3)	0.0470 (6)
C14	0.1274 (4)	0.2862 (3)	0.0923 (3)	0.0517 (6)
H14	0.0605	0.2357	-0.0028	0.062*
C15	0.3130 (4)	0.2744 (3)	0.1708 (4)	0.0563 (7)
H15	0.3690	0.2153	0.1265	0.068*
C16	-0.2496 (5)	0.3249 (5)	-0.0572 (6)	0.0793 (11)
H16A	-0.2253	0.3485	-0.1597	0.119*
H16B	-0.3746	0.3397	-0.0799	0.119*
H16C	-0.2233	0.2386	-0.0332	0.119*
01	-0.1408 (3)	0.3948 (3)	0.0910 (3)	0.0653 (6)
S1	0.70297 (12)	0.00836 (7)	0.67020 (11)	0.0601 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0614 (14)	0.0440 (15)	0.0452 (11)	-0.0010 (11)	0.0235 (10)	-0.0009 (10)
C2	0.0703 (18)	0.0529 (17)	0.0552 (15)	0.0134 (14)	0.0201 (12)	0.0062 (12)
C3	0.0586 (16)	0.074 (2)	0.0644 (16)	0.0158 (15)	0.0191 (13)	-0.0042 (15)
C4	0.0546 (14)	0.0643 (18)	0.0702 (15)	-0.0037 (14)	0.0286 (12)	-0.0104 (16)
C5	0.0569 (14)	0.0447 (14)	0.0579 (13)	-0.0035 (11)	0.0283 (11)	-0.0016 (10)
C6	0.0517 (12)	0.0365 (12)	0.0417 (9)	-0.0009 (9)	0.0213 (9)	-0.0032 (8)
C7	0.0511 (11)	0.0377 (12)	0.0430 (10)	-0.0007 (10)	0.0203 (8)	-0.0007 (9)
C8	0.0549 (13)	0.0414 (13)	0.0537 (11)	-0.0035 (11)	0.0250 (10)	-0.0008 (10)
C9	0.0563 (14)	0.0430 (15)	0.0645 (14)	0.0016 (12)	0.0196 (11)	0.0102 (12)
C10	0.0580 (14)	0.0403 (13)	0.0511 (12)	0.0057 (11)	0.0211 (10)	0.0068 (10)
C11	0.0699 (16)	0.0396 (14)	0.0490 (11)	-0.0006 (12)	0.0218 (11)	-0.0037 (10)
C12	0.0717 (17)	0.0425 (14)	0.0544 (12)	0.0106 (12)	0.0309 (12)	-0.0033 (11)
C13	0.0583 (14)	0.0412 (13)	0.0447 (10)	0.0112 (10)	0.0233 (10)	0.0049 (9)
C14	0.0597 (14)	0.0473 (15)	0.0442 (10)	0.0103 (12)	0.0155 (10)	-0.0068 (10)
C15	0.0633 (16)	0.0526 (17)	0.0528 (12)	0.0161 (12)	0.0221 (11)	-0.0033 (11)
C16	0.0594 (19)	0.078 (3)	0.090 (2)	0.0062 (16)	0.0179 (17)	-0.014 (2)
01	0.0607 (12)	0.0675 (16)	0.0672 (12)	0.0173 (11)	0.0238 (9)	-0.0048 (11)
S1	0.0723 (4)	0.0462 (4)	0.0659 (4)	-0.0059 (3)	0.0312 (3)	0.0108 (3)

Geometric parameters (Å, °)

C1—C2	1.394 (5)	С9—Н9А	0.9700
C1—C6	1.401 (4)	С9—Н9В	0.9700
C1—S1	1.738 (3)	C10—C15	1.376 (4)
C2—C3	1.381 (6)	C10—C11	1.392 (4)
С2—Н2	0.9300	C11—C12	1.380 (4)
C3—C4	1.391 (6)	C11—H11	0.9300
С3—Н3	0.9300	C12—C13	1.383 (4)
C4—C5	1.379 (5)	C12—H12	0.9300
C4—H4	0.9300	C13—O1	1.369 (4)
C5—C6	1.398 (4)	C13—C14	1.391 (4)
С5—Н5	0.9300	C14—C15	1.381 (4)
C6—C7	1.438 (4)	C14—H14	0.9300
С7—С8	1.347 (4)	C15—H15	0.9300
С7—С9	1.503 (4)	C16—O1	1.406 (5)
C8—S1	1.734 (3)	C16—H16A	0.9600
С8—Н8	0.9300	C16—H16B	0.9600
C9—C10	1.504 (4)	C16—H16C	0.9600
C2—C1—C6	121.9 (3)	С10—С9—Н9В	108.5
C2—C1—S1	127.2 (3)	Н9А—С9—Н9В	107.5
C6—C1—S1	110.9 (2)	C15—C10—C11	117.3 (3)
C3—C2—C1	117.6 (3)	C15—C10—C9	121.3 (3)
C3—C2—H2	121.2	C11—C10—C9	121.5 (3)
C1—C2—H2	121.2	C12-C11-C10	121.1 (3)
C2—C3—C4	121.5 (3)	C12—C11—H11	119.4
С2—С3—Н3	119.2	C10-C11-H11	119.4
С4—С3—Н3	119.2	C11—C12—C13	120.7 (2)
C5—C4—C3	120.6 (3)	C11—C12—H12	119.6
С5—С4—Н4	119.7	C13—C12—H12	119.6
С3—С4—Н4	119.7	O1—C13—C12	116.2 (2)
C4—C5—C6	119.5 (3)	O1-C13-C14	124.9 (3)
С4—С5—Н5	120.2	C12—C13—C14	118.9 (3)
С6—С5—Н5	120.2	C15—C14—C13	119.3 (3)
C5—C6—C1	118.9 (3)	C15—C14—H14	120.3
C5—C6—C7	128.2 (2)	C13—C14—H14	120.3
C1—C6—C7	112.9 (2)	C10—C15—C14	122.7 (3)
C8—C7—C6	111.2 (2)	C10—C15—H15	118.7
C8—C7—C9	127.0 (3)	C14—C15—H15	118.7
С6—С7—С9	121.8 (2)	O1—C16—H16A	109.5
C7—C8—S1	114.3 (2)	O1-C16-H16B	109.5
С7—С8—Н8	122.9	H16A—C16—H16B	109.5
S1—C8—H8	122.9	O1—C16—H16C	109.5
C7—C9—C10	114.9 (2)	H16A—C16—H16C	109.5
С7—С9—Н9А	108.5	H16B—C16—H16C	109.5
С10—С9—Н9А	108.5	C13—O1—C16	117.8 (3)
С7—С9—Н9В	108.5	C8—S1—C1	90.76 (14)
C6—C1—C2—C3	1.6 (4)	C6—C7—C9—C10	176.5 (2)

S1—C1—C2—C3	-178.0 (2)	C7—C9—C10—C15	-71.9 (4)
C1—C2—C3—C4	-0.3 (5)	C7—C9—C10—C11	108.3 (3)
C2—C3—C4—C5	-0.9 (5)	C15-C10-C11-C12	-0.6 (4)
C3—C4—C5—C6	0.8 (5)	C9—C10—C11—C12	179.2 (3)
C4—C5—C6—C1	0.5 (4)	C10-C11-C12-C13	1.7 (4)
C4—C5—C6—C7	179.1 (3)	C11—C12—C13—O1	179.0 (3)
C2—C1—C6—C5	-1.7 (4)	C11-C12-C13-C14	-1.9 (4)
S1—C1—C6—C5	177.95 (19)	O1-C13-C14-C15	-179.9 (3)
C2—C1—C6—C7	179.4 (3)	C12-C13-C14-C15	1.1 (4)
S1—C1—C6—C7	-0.9 (3)	C11-C10-C15-C14	-0.3 (5)
C5—C6—C7—C8	-178.0 (3)	C9-C10-C15-C14	179.9 (3)
C1—C6—C7—C8	0.8 (3)	C13-C14-C15-C10	0.0 (5)
С5—С6—С7—С9	1.7 (4)	C12-C13-O1-C16	176.7 (3)
C1—C6—C7—C9	-179.6 (2)	C14-C13-O1-C16	-2.4 (5)
C6—C7—C8—S1	-0.3 (3)	C7—C8—S1—C1	-0.2 (2)
C9—C7—C8—S1	-179.9 (2)	C2—C1—S1—C8	-179.7 (3)
C8—C7—C9—C10	-3.9 (4)	C6—C1—S1—C8	0.6 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C14—H14···Cg ⁱ	0.93	2.83	3.617 (2)	143
Symmetry codes: (i) $x-1$, y , $z-1$.				

